
© Copyright 2001-2008 Stephen M. Watt

Syntax and Formal Languages

CS 4447 / 9545 – Stephen M. Watt
University of Western Ontario

CS4447

Outline

• Syntax Elements

• Scanning vs Parsing

• Lexical Analysis

• Syntactic Analysis

• Regular Languages

• Context-Free Languages

• The Chomsky Hierarchy

• Composition of Languages

• Character Sets

• Extra topic: Operator Precedence Parsing

CS4447

Syntax Elements

• A whirlwind tour of scanning, parsing and formal language
theory.

CS4447

Scanning vs Parsing

We distinguish

• “lexical analysis” = “scanning”
= grouping characters together into tokens or words

and

• “parsing” = “syntactic analysis”
= grouping a linear sequence of tokens into a tree according to
some rules.

CS4447

Lexical Analysis

• In: Sequence of characters in some character set ‘a’, ‘é’, ‘ψ’.

• Out: Sequence of tokens belonging to a fixed set of classes.

• E.g.
1234 → INT
/* … */ → COMMENT
hello → ID
if → IF

• The rules for the classes are language-specific and can usually
be described by a “regular language.”

CS4447

Syntactic Analysis

• In: Sequence of tokens from some set of token classes.
• Out: Parse tree.
• E.g.

ID, ASSIGNOP, ID, LPREN, ID, RPREN

yields

• The rules for making the trees are language-specific and can
usually be described by a “context-free language.”

CS4447

Regular Languages

• Described by regular expressions

a b a | b a* (ab|cd)*

• Accepted by finite automata

CS4447

A Regular Expression and Its Finite Automaton

• There is a correspondence between regular expressions and
finite automata.

(ab|cd)*

CS4447

Grammars for Regular Languages

• Σ, the alphabet. E.g. {’a’, ’b’, ’c’, ...}
• V, the variables. E.g. {token, word, int, ...}
• S, the start symbol V . E.g. token
• P, the productions = rules, with the LHS V and RHS (ΣV)*.
• E.g.

uppercase → ’A’ | ’B’ | ... | ’Z’ (26 rules)
lowercase → ’a’ | ’b’ | ... | ’z’ (26 rules)
digit → ’0’ | ... | ’9’ (10 rules)
letter → uppercase | lowercase (2 rules)
int → digit | digit int (2 rules)
word → letter | letter word (2 rules)
token → int | word (2 rules)

• Recursive rules are allowed, but the recursion must be either at
the left or the right of the RHS in each instance

CS4447

Alternatively…

• Can specify rules using regular expressions on RHS, where
each RHS uses only previously defined variables.

I.e. rule for v[i] is a regular expression on Σ { v[j] | j < i}.

E.g.

uppercase → ’A’ | ’B’ | ... | ’Z’ (1 rule)

lowercase → ’a’ | ’b’ | ... | ’z’ (1 rule)

digit → ’0’ | ... | ’9’ (1 rule)

letter → uppercase | lowercase (1 rule)

int → digit digit* (1 rule)

word → letter letter* (1 rule)

token → int | word (1 rule)

CS4447

Accepting states classify tokens

• A scanner accepts or rejects an input, depending on whether it
is in an accepting state when it reaches the end of the string.

• Accepting states can be labelled to classify the tokens
accepted.

• Note: the categories of the token classes and the variables of
the grammar need not have anything to do with each other.

CS4447

Tools for Scanners

• lex, flex, jflex

• take a grammar for a regular language

• produce a finite automaton as a program.

CS4447

Context –Free Languages
• As before: Σ alphabet, V variables, S V start, P productions
• Rules (productions) are of the form v → ,

where v V , (Σ V)*.
• Arbitrary recursion allowed in the RHS.

• Example: Well-nested parentheses.
Σ = { ‘(‘, ‘)’ } V = {E} S = E
P = { E → nothing, E → ‘(‘ E ‘)’, E → E E }

• Example: Arithmetic expressions.
Σ = {‘(‘, ‘)’, ‘+’, ‘-’, ‘*’, ID, INT},
V = {Expr, Sum, Product, Factor},
S = Expr,
P = { Expr → Sum,

Sum → Product ‘+’ Sum | Product ‘−’ Sum | Product
Product → Factor ‘*’ Product | Factor
Factor → ID | ‘(‘ Expr ‘)’ }

CS4447

Pushdown Automata

• Context-free languages are recognized by
“Pushdown Automata”

• These are similar to finite automata, but they can keep track of
state on a STACK.

CS4447

The Chomsky Hierarchy

Type Language Class
(Production)

Theoretical

Machine

Tool
(Example)

3 Regular
Languages
(R → abcR)

Finite Automaton
(single state)

Lex

(Scanner for C)

2 Context Free
Languages

(S → xSx)

Deterministic Push
Down Automaton

(stack)

Yacc

(Parser for C)

1 Context Sensitive
Languages

(QR → XY,
| | | |)

Linear Bounded
Automaton

(tape proportional
to input)

Computer

(Fixed size mem)

0 Unrestricted
Grammar

(aSTb → xUVy)

Turing Machine

(infinite tape)

Computer

(any program)

CS4447

Composition of Languages

• A real parser is usually built as a composition of simpler
languages

L = L[2] o L[1] o L[0]

where the output of L[i] is the input to L[i+1].

• E.g. The token classes of the scanner comprise the alphabet Σ
of the parser.

L[0] : ASCII → { ID, ‘+’, ‘*’, ‘(‘, ‘)’, COMMENT}
L[1] : { ID, ‘+’, ‘*’, ‘(‘, ‘)’, COMMENT} → { ID, ‘+’, ‘*’, ‘(‘, ‘)’}
L[2] : { ID, ‘+’, ‘*’, ‘(‘, ‘)’} → Parse Tree

CS4447

Character Sets

• ASCII:
American Standard Code for Information Interchange. (7 bit)

• (EBCDIC)

• Latin1: Extension to ASCII for accented characters, etc. (8 bit)

• Unicode: All scripts in modern use (Han, Armenian, Klingon,…)
17 planes of 16 bit characters.

CS4447

UTF-8

• A way to store Unicode data in ASCII-compatible form:

0x00000000-0x0000007F: 0xxxxxxx

0x00000080-0x000007FF: 110xxxxx 10xxxxxx

0x00000800-0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx

0x00010000-0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

0x00200000-0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

0x04000000-0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

• Examples (from Linux Man page):

The character 0x00a9 = 0000 0000 1010 1001 (©) is encoded in UTF-8 as:

11000010 10101001 = 0xc2 0xa9

The character 0x2260 = 0010 0010 0110 0000 (≠) is encoded in UTF-8 as:

11100010 10001001 10100000 = 0xe2 0x89 0xa0

